Hyper Rayleigh Scattering

From CleanEnergyWIKI
Revision as of 11:21, 12 October 2009 by Cmditradmin (talk | contribs)
Jump to navigation Jump to search

Hyper Rayleigh Scattering (aka Harmonic Light Scattering or HRS) is one method for measuring the first hyperpolarizabilityβ. Another method is electric field induced second harmonic generation (EFISH)

Overview

Schematic of the HRS setup. CL = collimating lenses; LPF = long-pass filter; FL = 300-mm focusing lens; S = solution of chromophore in solvent of choice; DO = detection optics; IF = interference filter (950 nm)

In HRS A dilute sample of a test chromophore is prepared in a solvent. The dielectric properties of the solvent influence the β (solvatochromatism). In HRS An incident laser generates a second harmonic signal, specifically the frequency double signal. This can be related to the beta of the sample using this formula:

<math>\frac {I_{sample}} {I_{solvent}} = \frac {N_{sample} \langle \beta^2 _{sample} \rangle + N_{solvent} \langle \beta^2_{solvent}\rangle} {N_{solvent} \langle \beta^2_{solvent}\rangle}\,\!</math>
HRS spectrum for 1.5 μm TCP1 in CHCl3

See Firestone 2004 [1].


See Wikipedia on Rayleigh Scattering

See also Density Functional Theory

See Wikipedia on Raman Scattering

Technique

Video to come

Significance

References

  1. K. A. Firestone, P. Reid, R. Lawson, S. H. Jang, and L. R. Dalton, “Advances in Organic Electro-Optic Materials and Processing,” Inorg. Chem. Acta, 357, 3957-66 (2004)