Difference between revisions of "Teng-Man Method"
Cmditradmin (talk | contribs) m (→Technique) |
Cmditradmin (talk | contribs) m |
||
Line 2: | Line 2: | ||
<tr> | <tr> | ||
<td style="text-align: center; width: 33%">[[Main_Page#Research Equipment, Devices and Techniques|Return to Research Tool Menu]]</td> | <td style="text-align: center; width: 33%">[[Main_Page#Research Equipment, Devices and Techniques|Return to Research Tool Menu]]</td> | ||
=== Teng- | === Teng-Mann Method for Measuring Electro-optic coefficient=== | ||
[[Image:teng_mann.png|thumb|500px|Teng-Man Testing configuration]] | [[Image:teng_mann.png|thumb|500px|Teng-Man Testing configuration]] | ||
The Teng - | The Teng - Mann method can measure R<sub>33</sub> as the sample is being poled. | ||
R<sub>33</sub> is an elipsometric measurement<ref>http://en.wikipedia.org/wiki/Ellipsometry</ref>. A poling voltage is applied to the film while making the elipsometric measurements and looking for changes in the AC signal generated by incident light. The stage can be heated until the film reaches its melting point T<sub>g</sub>. These measurements are made with the materials in a device configuration. The formula for R<sub>33</sub> | R<sub>33</sub> is an elipsometric measurement<ref>http://en.wikipedia.org/wiki/Ellipsometry</ref>. A poling voltage is applied to the film while making the elipsometric measurements and looking for changes in the AC signal generated by incident light. The stage can be heated until the film reaches its melting point T<sub>g</sub>. These measurements are made with the materials in a device configuration. The formula for R<sub>33</sub> | ||
Line 31: | Line 31: | ||
[[Image:Teng mann graph.png|thumb|400px|right|Real time optimization of r<sub>33</sub>]] | [[Image:Teng mann graph.png|thumb|400px|right|Real time optimization of r<sub>33</sub>]] | ||
Teng_Mann techniques allows real-time optimization of processing conditions because you can evaluate r<sub>33</sub> during the poling process. It is used to confirm that a sample has been poled. The R33 measurement is best used as a relative measure because it can be inaccurate. Use attenuated total reflection ATR to get an accurate absolute measure. | |||
Line 41: | Line 41: | ||
=== Technique === | === Technique === | ||
Part 1 Teng | Part 1 Teng Mann Setup | ||
{{#ev:youtube|5cy6q7FBs3Q}} | {{#ev:youtube|5cy6q7FBs3Q}} | ||
Revision as of 10:33, 4 October 2011
Teng-Mann Method for Measuring Electro-optic coefficient
The Teng - Mann method can measure R33 as the sample is being poled. R33 is an elipsometric measurement[1]. A poling voltage is applied to the film while making the elipsometric measurements and looking for changes in the AC signal generated by incident light. The stage can be heated until the film reaches its melting point Tg. These measurements are made with the materials in a device configuration. The formula for R33
- <math>r_{33}= \frac {3\lambda I_m } {4 \pi V_{poly}I_c n^2 } \frac {(n^2 - sin^2 \theta) ^{1/2}}{sin^2 \theta} \approx I_m/ I_c
\,\!</math> where
- <math>I_m\,\!</math> is the amplitude of modulation
- <math>V_{poly}\,\!</math> is the modulation voltage across EO polymer
- <math>I_c\,\!</math> is the half intensity point
- <math>n\,\!</math> is the refractive index of the polymer
and
- <math>V_{poly}= V_{ACtot} \frac {d_{poly}} {d_{poly} + d_{clad}} \cdot \sqrt {\frac {\epsilon_{clad}} {\epsilon _{poly}}}\,\!</math>
The measured quanitities are:
- <math>I= 2I_M\,\!</math> Modulated Intensity
- <math>I_0 = 2I_C\,\!</math> Output intensity
- <math>V_m = V_0 sin\omega t\,\!</math> Modulation Voltage
Teng_Mann techniques allows real-time optimization of processing conditions because you can evaluate r33 during the poling process. It is used to confirm that a sample has been poled. The R33 measurement is best used as a relative measure because it can be inaccurate. Use attenuated total reflection ATR to get an accurate absolute measure.
See Khanarian 1996 [2]
See STC-MDITR research project 1.1 [3]
Technique
Part 1 Teng Mann Setup
Part 2 Teng Man Measurement
Significance
References
- ↑ http://en.wikipedia.org/wiki/Ellipsometry
- ↑ Khanarian, et. al., JOSA B13, 1927 (1996)
- ↑ http://stc-mditr.org/research/oeoaomd/projects/1.111.cfm Measuring R33 with Interferometry
Return to Research Tool Menu |