Difference between revisions of "Current OPV Research Directions"
Cmditradmin (talk | contribs) |
Cmditradmin (talk | contribs) |
||
Line 118: | Line 118: | ||
See Armstrong <ref>N. R. Armstrong et al., Adv. Funct. Mater. ; DOI: 10.1002/adfm.200801723</ref> | See Armstrong <ref>N. R. Armstrong et al., Adv. Funct. Mater. ; DOI: 10.1002/adfm.200801723</ref> | ||
== References == | |||
<references/> | |||
<table id="toc" style="width: 100%"> | <table id="toc" style="width: 100%"> |
Revision as of 10:47, 3 September 2009
Previous Topic | Return to OPV Menu |
These are promising directions in organic photovoltaic research being pursued at the CMDITR
Evolution of Solar Cell Efficiency
These are the types of efficiencies that people have been able to reach. For example, with silicon, fill factors of about 0.8 and conversion efficiency, of 24% can be reached.
The Grätzel cell, which is a hybrid cell that has both organic and inorganic components and uses a liquid electronlyge, has a conversion efficiency of about 11%. Michael Grätzel is a professor at the technical school of Lausanne in Switzerland.
With polymers, Allen Heeger has recently reported a conversion efficiency of up to 6%. Our goal at this time is to reach the 10% efficiency in organic cells. However, it does not seem to be very easy to achieve.
Characteristic | Silicon | Organic (Tang) | Organic (Forrest) | Organic (Graetzel) | Polymer | Hybrid nanorods |
---|---|---|---|---|---|---|
Open circuit voltage (Voc; V) | 0.7 | 0.45 | 1.02 | 0.721 | 0.63 | 0.7 |
Short circuit current density (Jsc; mA/cm2) | 43 | 2.3 | 9.7 | 20.53 | 9.5 | 5.7 |
Voc x Jsc (mW/cm2) | 30.1 | 1.035 | 9.894 | 14.80213 | 5.985 | 3.99 |
Fill factor (FF) | 0.8 | 0.65 | 0.59 | 0.704 | 0.68 | 0.4 |
Illumination intensity (mW/cm2) | 100 | 75 | 100 | 100 | 80 | 96.4 |
Conversion efficiency (%) | 24.08 | 0.9 | 5.7 | 10.4 | 5.1 | 1.7 |
New materials
Research directions include using multilayers of small molecules, building polymer blends with interpenetrated networks, nanostructured oxide polymers and hybird approaches using doped inorganics in an organic matrix.
Discotic Mesophase Materials
Dendritic Polymers
Nanoparticles
Tailored interfaces
Fabrication Processes
There are new strategies for producing titanyl phthalocyanine (TiOPc) and C60 heterojunctions. After deposition the material can be solvent annealed resulting in nanotexturing and tunability in the NIR.
See Armstrong [1]
References
- ↑ N. R. Armstrong et al., Adv. Funct. Mater. ; DOI: 10.1002/adfm.200801723
Previous Topic | Return to OPV Menu |