Difference between revisions of "Total Internal Reflection"

From CleanEnergyWIKI
Jump to navigation Jump to search
m
 
(5 intermediate revisions by the same user not shown)
Line 10: Line 10:
[[Image:Snellslaw.png|thumb|300px| When &theta;<sub>1</sub> > &theta;<sub>1c</sub> light can not enter medium n<sub>2</sub>]]
[[Image:Snellslaw.png|thumb|300px| When &theta;<sub>1</sub> > &theta;<sub>1c</sub> light can not enter medium n<sub>2</sub>]]


A critical concept in the case of optical fibers is the case total internal reflection. The bending of light as it goes into medium is related to the index of reflection of the materials (n<sub>1</sub> and n<sub>2</sub>). By Snell's law when n<sub>1</sub> > n<sub>2</sub> then &theta; <sub>1</sub> is less than &theta;<sub>2</sub>. As you decrease the angle &theta;<sub>1</sub> and bring the light closer to parallel with the interface you reach a critical angle &theta;<sub>1c</sub> where there is total internal reflection.
A critical concept in the case of optical fibers is the concept of total internal reflection. The bending of light as it goes from one medium into another is related to the index of reflection of the materials (n<sub>1</sub> and n<sub>2</sub>). By Snell's law when n<sub>1</sub> > n<sub>2</sub> then &theta; <sub>1</sub> is less than &theta;<sub>2</sub>. As you decrease the angle &theta;<sub>1</sub> and bring the light closer to parallel with the interface you reach a critical angle &theta;<sub>1c</sub> where there is total internal reflection.


Snells laws are also known as Fresnel's Equations:
Snells laws are also known as Fresnel's Equations:
Line 22: Line 22:
where
where
:<math>\theta_i\,\!</math> is the angle of incidence
:<math>\theta_i\,\!</math> is the angle of incidence
:<math>\theta_r\,\!</math> is the angle of reflection
:<math>\theta_r\,\!</math> is the angle of reflection


Line 36: Line 37:
for a critical angle Θ<sub>1</sub>, Θ<sub>2</sub> = 90°and the beam emerges along the surface
for a critical angle Θ<sub>1</sub>, Θ<sub>2</sub> = 90°and the beam emerges along the surface


When &theta;<sub>2</sub> = 90° &rarr; sin &theta;<sub>2</sub> = 1
When  


:<math>\theta_2 = 90° \rightarrow sin \theta_2 = 1\,\!</math>


If &theta;<sub>i</sub> > &theta;<sub>c</sub> then there is total reflection and there is no transmitted light in the second medium (the irradiance of the reflected and incident beams is equal). Light interacts at the interface and there is a phase shift between the incident and the reflected beams which is dependent on the two materials.
:<math>\theta_{1c}  = sin^{-1} \left (\frac {n_2} {n_1} \right )\,\!</math>


tan psi


and when
:<math>\theta_1 > \theta_{1c}\,\!</math> there is total reflection
In this case there is no transmitted light in the second medium (the irradiance of the reflected and incident beams is equal). Light interacts at the interface and there is a phase shift between the incident and the reflected beams which is dependent on the two materials.


This is a critical process in optical fibers and waveguides because it can carry light for long distances. For these values of index of refraction you get a critical angle of 78.6 which means the light must be very nearly parallel to the interface.
This is a critical process in optical fibers and waveguides because it can carry light for long distances. For these values of index of refraction you get a critical angle of 78.6 which means the light must be very nearly parallel to the interface.
Line 48: Line 54:
for n<sub>1</sub> = 1.53 and n<sub>2</sub> = 1.50 : &theta;<sub>1c</sub> = 78.6°
for n<sub>1</sub> = 1.53 and n<sub>2</sub> = 1.50 : &theta;<sub>1c</sub> = 78.6°


[[Image:Wavelength_inside.jpg|thumb|300px|As light passes from a vacuum into a medium with an index of refraction of 2, the wavelength get cut in half, and therefore it will take twice as long for to get through the medium. Again the frequency does not change.]]
 


<br clear='all'>
<br clear='all'>
Line 63: Line 69:
<swf width="500" height="400">http://concave.stc.arizona.edu/thepoint/Interactive/ofiberapp2.swf</swf>
<swf width="500" height="400">http://concave.stc.arizona.edu/thepoint/Interactive/ofiberapp2.swf</swf>


 
[[category:light]]
<table id="toc" style="width: 100%">
<table id="toc" style="width: 100%">
<tr>
<tr>

Latest revision as of 11:55, 29 December 2009

Previous Topic Return to Optical Fibers, Waveguides, and Lasers Menu Next Topic

Total Internal Reflection

When θ1 > θ1c light can not enter medium n2

A critical concept in the case of optical fibers is the concept of total internal reflection. The bending of light as it goes from one medium into another is related to the index of reflection of the materials (n1 and n2). By Snell's law when n1 > n2 then θ 1 is less than θ2. As you decrease the angle θ1 and bring the light closer to parallel with the interface you reach a critical angle θ1c where there is total internal reflection.

Snells laws are also known as Fresnel's Equations:

<math>\theta _i = \theta _r\,\!</math>

and

<math>\frac {sin \theta_i} {\theta_t} = \frac {n_2} {n_1}\,\!</math>

where

<math>\theta_i\,\!</math> is the angle of incidence
<math>\theta_r\,\!</math> is the angle of reflection
<math>\theta_{c} = sin^{-1}(\frac {n_2} {n_1} )\,\!</math>

where:

<math>\theta_{c}\,\!</math> is the critical angle
<math>n_1 , n_2\,\!</math> are the index of refraction of the two media


if θ1 keeps Increasing: θ2 approaches 90°

for a critical angle Θ1, Θ2 = 90°and the beam emerges along the surface

When

<math>\theta_2 = 90° \rightarrow sin \theta_2 = 1\,\!</math>
<math>\theta_{1c} = sin^{-1} \left (\frac {n_2} {n_1} \right )\,\!</math>


and when

<math>\theta_1 > \theta_{1c}\,\!</math> there is total reflection

In this case there is no transmitted light in the second medium (the irradiance of the reflected and incident beams is equal). Light interacts at the interface and there is a phase shift between the incident and the reflected beams which is dependent on the two materials.

This is a critical process in optical fibers and waveguides because it can carry light for long distances. For these values of index of refraction you get a critical angle of 78.6 which means the light must be very nearly parallel to the interface.

for n1 = 1.53 and n2 = 1.50 : θ1c = 78.6°



Simulations

This flash simulation shows how total internal reflection and minimum radius of turns depends on the diameter of the optical fiber. The diameter changes how much of the light is below the critical angle where it is fully reflected.

<swf width="500" height="400">http://concave.stc.arizona.edu/thepoint/Interactive/ofiber.swf</swf>


This simulation allows you to select combinations of materials with different indexes of refraction. Try to get the best combination to achieve total internal reflection. <swf width="500" height="400">http://concave.stc.arizona.edu/thepoint/Interactive/ofiberapp2.swf</swf>

Previous Topic Return to Optical Fibers, Waveguides, and Lasers Menu Next Topic