Difference between revisions of "OLED Device Applications"

From CleanEnergyWIKI
Jump to navigation Jump to search
Line 1: Line 1:
<table id="toc" style="width: 100%">
<table id="toc" style="width: 100%">
<tr>
<tr>
 
<td style="text-align: left; width: 33%; color:#cccccc">Previous Topic</td>
<td style="text-align: center; width: 33%">[[Main_Page#Organic_Light_Emitting_Diodes|Return to OLED Menu]]</td>
<td style="text-align: center; width: 33%">[[Main_Page#Organic_Light_Emitting_Diodes|Return to OLED Menu]]</td>
<td style="text-align: right; width: 33%">[[Light Emitting Electrochemical Processes|Next Topic]]</td>
<td style="text-align: right; width: 33%">[[Light Emitting Electrochemical Processes|Next Topic]]</td>

Revision as of 13:31, 23 June 2009

Previous Topic Return to OLED Menu Next Topic


Organic Light Emitting Diodes (OLEDs) are just are just beginning to appear in the commercial market. These products represent the fruition of 50 years of research, building first on the principles of silicon LEDS.

The first OLED devices include TVs, computer monitors, electronic control displays, cameras, phones, and lighting.

Advantages of OLEDs

  • Superior viewing angle- Monitors and TV screens are visible from side angles, unlike many LCD monitors.
  • Color Rendition- New dopants and dyes are being developed to give OLEDs a larger range and flexibility of color rendition.
  • Brightness- OLED pixels produce light rather than block light with polarizers as an LCD display does.
  • Faster Response- OLED devices have a typical response time of .01 ms compared to 2.0 ms for LEDs.
  • Energy Efficiency- The OLED is an efficient, low heat light source.
  • Cost- New polymers and coatings will allow LEDs to be produced by printing and spin-coating techniques.
  • Flexibility- Polymer backing and thin coatings permit OLEDs to flex without breaking.
  • Thin- An OLED display can be thin as a sheet of paper.

Device Construction

An OLED consists of a thin transparent electrode, two or more organic transport/emitting layers, and a metal cathode. When power is applied to the electrodes light is emitted from the central layer.

Individual red, green and blue emitting OLEDs are arranged in a grid with individual power supplies for each pixel. This is called a passive display. This is being replaced with active thin film transistor displays that use a transistor to control each pixel. This is called an active matrix display.

Commercial OLED Products

Sony OLED TV

http://www.universaldisplay.com/

http://www.kodak.com/eknec/PageQuerier.jhtml?pq-path=1473&pq-locale=en_US&_requestid=204

http://www.cdtltd.co.uk/

http://www.novaled.com/

Osram Opto Semiconductors

Return to OLED Menu Next Topic