

CMDITR 101: Project 4.2 Packaging and Processing For Printed Electronics Samuel Graham

Arizona's First University.

Georgia Institute of Technology

Example: Flexible Electronics

The Functionality, Reliability and Processing of Organic Electronic Devices Are Linked To Packaging and Processing Methods

What is Important In Designing and Evaluating Packaging???

Center on Materials and Devices for Information Technology Research - An NSF Science and Technology Center No. DMR 0120967 Annual Retreat – February 16-20, 2010 – Seattle, WA

http://www.stc-mditr.org

Reliability Issues: Device Encapsulation

1 hr

Need for Barrier Layers

- Highly reactive cathode and organic layer are very sensitive to water vapor and oxygen.
- Organic materials are sensitive to high temperatures and oxidizing agents.

Must address:

- \Rightarrow Development of high barrier performance films.
- \Rightarrow Process compatibility with device.
- \Rightarrow Extending technology to large areas and devices with topography.

Mechanical Concerns

- Inorganic layers found in encapsulation are generally very brittle and may crack during bending.
- Internal stresses from processing can impact the reliability of the encapsulation.

Must address:

- \Rightarrow Mechanically robust barrier layers.
- \Rightarrow Adhesion and stress management.

Center on Materials and Devices for Information Technology Research - An NSF Science and Technology Center No. DMR 0120967 Annual Retreat – February 16-20, 2010 – Seattle, WA

G. Dennler, et. al., J. Mater. Res: Vol: 20, No. 12, Dec 2005. Vol.20, 3224

Defects in Barrier Films

Single Layer Thin Films

Annual Retreat - February 16-20, 2010 - Seattle, WA http://www.stc-mditr.org

Key Terminology

Water Vapor Transmission Rate

- The mass of water vapor which diffuses through a solid per unit area and unit time (g/m²/day)
- Permeability
 - transmission rate x film thickness/pressure
- Bending Strength
 - The load at which a material undergoes nonlinear deformation (yield) or undergoes failure (failure strength)

Fatigue Strength

- The strength amplitude at which failure does not occur in materials under cyclic loading.
 Usually defined for a given number of cycles (e.g. 10⁶)
- Toughness
 - The amount of energy a material can absorb before failure.

Mass Transport in Barrier Films

Principles of permeation

P = DS

P: Permeation coefficient (permeability)

D : Diffusion coefficient, determines how **fast** the permeant can **move** in the media

S: Solubility coefficient, determines how **much** of the permeant can **be dissolved in in the film**

Driving force

Fick's first Law

Henry's Law

J : Flux of permeant $\partial c / \partial x$: concentration gradient *p* : Partial pressure of permeant

Mass Transport in Barrier Films

Diffusion in multilayer structure

http://www.stc-mditr.org

Bending of Flexible Electronics

Flexural deformation puts one surface in tension, one in compression. Brittle Materials used in encapsulation fail easily under tension, not compression. The strain or stress induced in the films are a function of bending radius AND substrate thickness.

Under 2 point bending, the strain is highest in the center, lower at the edges. Repeated bending results in the initiation of damage and failure.

Lifetime and Reliability

Overall device efficiency (Oriel 91160, AM 1.5G)

Center on Materials and Devices for Information Technology Research - An NSF Science and Technology Center No. DMR 0120967 Annual Retreat – February 16-20, 2010 – Seattle, WA

(N. Kimt, et al., Applied Physics Letters, 2009)

New Sealant Material used to encapsulate electrochromics. Shows WVTR values as low as 5x10⁻⁵ g/m²/day at 50C/80% RH. Ca samples tested for 3 months.

http://www.stc-mditr.org

Societal Impact/ Applications

Flexible **Transistors**

http://www.stc-mditr.org

WA

